2023-08-14 18:12:39 +02:00
## Configuration file for CAVA.
# Remove the ; to change parameters.
2020-02-05 19:42:02 +01:00
[general]
# Smoothing mode. Can be 'normal', 'scientific' or 'waves'. DEPRECATED as of 0.6.0
; mode = normal
2020-10-21 00:43:21 +02:00
2020-02-05 19:42:02 +01:00
# Accepts only non-negative values.
2023-08-14 18:12:39 +02:00
; framerate = 60
2020-02-05 19:42:02 +01:00
# 'autosens' will attempt to decrease sensitivity if the bars peak. 1 = on, 0 = off
# new as of 0.6.0 autosens of low values (dynamic range)
# 'overshoot' allows bars to overshoot (in % of terminal height) without initiating autosens. DEPRECATED as of 0.6.0
; autosens = 1
; overshoot = 20
2022-05-18 23:22:55 +02:00
# Manual sensitivity in %. If autosens is enabled, this will only be the initial value.
2020-02-05 19:42:02 +01:00
# 200 means double height. Accepts only non-negative values.
; sensitivity = 100
2023-08-14 18:12:39 +02:00
# The number of bars (0-512). 0 sets it to auto (fill up console).
2020-02-05 19:42:02 +01:00
# Bars' width and space between bars in number of characters.
2020-10-21 00:43:21 +02:00
; bars = 0
; bar_width = 2
; bar_spacing = 1
2022-05-18 23:22:55 +02:00
# bar_height is only used for output in "noritake" format
; bar_height = 32
# For SDL width and space between bars is in pixels, defaults are:
; bar_width = 20
; bar_spacing = 5
2023-08-14 18:12:39 +02:00
# sdl_glsl have these default values, they are only used to calulate max number of bars.
; bar_width = 1
; bar_spacing = 0
2020-02-05 19:42:02 +01:00
# Lower and higher cutoff frequencies for lowest and highest bars
# the bandwidth of the visualizer.
# Note: there is a minimum total bandwidth of 43Mhz x number of bars.
# Cava will automatically increase the higher cutoff if a too low band is specified.
; lower_cutoff_freq = 50
; higher_cutoff_freq = 10000
2020-10-21 00:43:21 +02:00
2022-05-18 23:22:55 +02:00
# Seconds with no input before cava goes to sleep mode. Cava will not perform FFT or drawing and
# only check for input once per second. Cava will wake up once input is detected. 0 = disable.
; sleep_timer = 0
2020-02-05 19:42:02 +01:00
[input]
2024-04-03 01:02:28 +02:00
# Audio capturing method. Possible methods are: 'fifo', 'portaudio', 'pipewire', 'alsa', 'pulse', 'sndio', 'oss', 'jack' or 'shmem'
# Defaults to 'oss', 'pipewire', 'sndio', 'jack', 'pulse', 'alsa', 'portaudio' or 'fifo', in that order, dependent on what support cava was built with.
# On Mac it defaults to 'portaudio' or 'fifo'
2023-08-14 18:12:39 +02:00
# On windows this is automatic and no input settings are needed.
2020-02-05 19:42:02 +01:00
#
# All input methods uses the same config variable 'source'
# to define where it should get the audio.
#
2023-08-14 18:12:39 +02:00
# For pulseaudio and pipewire 'source' will be the source. Default: 'auto', which uses the monitor source of the default sink
2020-02-05 19:42:02 +01:00
# (all pulseaudio sinks(outputs) have 'monitor' sources(inputs) associated with them).
2020-10-21 00:43:21 +02:00
#
2024-04-03 01:02:28 +02:00
# For pipewire 'source' will be the object name or object.serial of the device to capture from.
2023-08-14 18:12:39 +02:00
# Both input and output devices are supported.
#
2020-02-05 19:42:02 +01:00
# For alsa 'source' will be the capture device.
# For fifo 'source' will be the path to fifo-file.
2020-10-21 00:43:21 +02:00
# For shmem 'source' will be /squeezelite-AA:BB:CC:DD:EE:FF where 'AA:BB:CC:DD:EE:FF' will be squeezelite's MAC address
2024-04-03 01:02:28 +02:00
#
# For sndio 'source' will be a raw recording audio descriptor or a monitoring sub-device, e.g. 'rsnd/2' or 'snd/1'. Default: 'default'.
# README.md contains further information on how to setup CAVA for sndio.
#
# For oss 'source' will be the path to a audio device, e.g. '/dev/dsp2'. Default: '/dev/dsp', i.e. the default audio device.
# README.md contains further information on how to setup CAVA for OSS on FreeBSD.
#
# For jack 'source' will be the name of the JACK server to connect to, e.g. 'foobar'. Default: 'default'.
# README.md contains further information on how to setup CAVA for JACK.
#
2020-10-21 00:43:21 +02:00
; method = pulse
; source = auto
2020-02-05 19:42:02 +01:00
2023-08-14 18:12:39 +02:00
method = pipewire
source = auto
2020-02-05 19:42:02 +01:00
; method = alsa
; source = hw:Loopback,1
; method = fifo
; source = /tmp/mpd.fifo
2020-10-21 00:43:21 +02:00
; method = shmem
; source = /squeezelite-AA:BB:CC:DD:EE:FF
; method = portaudio
; source = auto
2020-02-05 19:42:02 +01:00
2024-04-03 01:02:28 +02:00
; method = sndio
; source = default
; method = oss
; source = /dev/dsp
; method = jack
; source = default
# The options 'sample_rate', 'sample_bits', 'channels' and 'autoconnect' can be configured for some input methods:
# sample_rate: fifo, pipewire, sndio, oss
# sample_bits: fifo, pipewire, sndio, oss
# channels: sndio, oss, jack
# autoconnect: jack
# Other methods ignore these settings.
#
# For 'sndio' and 'oss' they are only preferred values, i.e. if the values are not supported
# by the chosen audio device, the device will use other supported values instead.
# Example: 48000, 32 and 2, but the device only supports 44100, 16 and 1, then it
# will use 44100, 16 and 1.
#
; sample_rate = 44100
; sample_bits = 16
; channels = 2
; autoconnect = 2
2020-02-05 19:42:02 +01:00
[output]
2023-08-14 18:12:39 +02:00
# Output method. Can be 'ncurses', 'noncurses', 'raw', 'noritake', 'sdl'
# or 'sdl_glsl'.
2024-04-03 01:02:28 +02:00
# 'noncurses' (default) uses a buffer and cursor movements to only print
# changes from frame to frame in the terminal. Uses less resources and is less
# prone to tearing (vsync issues) than 'ncurses'.
2020-10-21 00:43:21 +02:00
#
# 'raw' is an 8 or 16 bit (configurable via the 'bit_format' option) data
# stream of the bar heights that can be used to send to other applications.
2020-02-05 19:42:02 +01:00
# 'raw' defaults to 200 bars, which can be adjusted in the 'bars' option above.
2022-05-18 23:22:55 +02:00
#
# 'noritake' outputs a bitmap in the format expected by a Noritake VFD display
# in graphic mode. It only support the 3000 series graphical VFDs for now.
#
# 'sdl' uses the Simple DirectMedia Layer to render in a graphical context.
2023-08-14 18:12:39 +02:00
# 'sdl_glsl' uses SDL to create an OpenGL context. Write your own shaders or
# use one of the predefined ones.
2024-04-03 01:02:28 +02:00
method = ncurses
2020-02-05 19:42:02 +01:00
2023-08-14 18:12:39 +02:00
# Orientation of the visualization. Can be 'bottom', 'top', 'left' or 'right'.
# Default is 'bottom'. Other orientations are only supported on sdl and ncruses
# output. Note: many fonts have weird glyphs for 'top' and 'right' characters,
# which can make ncurses not look right.
; orientation = bottom
2020-02-05 19:42:02 +01:00
# Visual channels. Can be 'stereo' or 'mono'.
# 'stereo' mirrors both channels with low frequencies in center.
2020-10-21 00:43:21 +02:00
# 'mono' outputs left to right lowest to highest frequencies.
# 'mono_option' set mono to either take input from 'left', 'right' or 'average'.
2022-05-18 23:22:55 +02:00
# set 'reverse' to 1 to display frequencies the other way around.
2020-02-05 19:42:02 +01:00
; channels = stereo
2020-10-21 00:43:21 +02:00
; mono_option = average
2022-05-18 23:22:55 +02:00
; reverse = 0
2020-02-05 19:42:02 +01:00
# Raw output target. A fifo will be created if target does not exist.
; raw_target = /dev/stdout
# Raw data format. Can be 'binary' or 'ascii'.
; data_format = binary
# Binary bit format, can be '8bit' (0-255) or '16bit' (0-65530).
; bit_format = 16bit
# Ascii max value. In 'ascii' mode range will run from 0 to value specified here
; ascii_max_range = 1000
# Ascii delimiters. In ascii format each bar and frame is separated by a delimiters.
# Use decimal value in ascii table (i.e. 59 = ';' and 10 = '\n' (line feed)).
; bar_delimiter = 59
; frame_delimiter = 10
2022-05-18 23:22:55 +02:00
# sdl window size and position. -1,-1 is centered.
; sdl_width = 1000
; sdl_height = 500
; sdl_x = -1
; sdl_y= -1
2024-04-03 01:02:28 +02:00
; sdl_full_screen = 0
2020-02-05 19:42:02 +01:00
2023-08-14 18:12:39 +02:00
# set label on bars on the x-axis. Can be 'frequency' or 'none'. Default: 'none'
# 'frequency' displays the lower cut off frequency of the bar above.
# Only supported on ncurses and noncurses output.
; xaxis = none
# enable alacritty synchronized updates. 1 = on, 0 = off
# removes flickering in alacritty terminal emulator.
# defaults to off since the behaviour in other terminal emulators is unknown
; alacritty_sync = 0
# Shaders for sdl_glsl, located in $HOME/.config/cava/shaders
; vertex_shader = pass_through.vert
; fragment_shader = bar_spectrum.frag
; for glsl output mode, keep rendering even if no audio
; continuous_rendering = 0
2024-04-03 01:02:28 +02:00
# disable console blank (screen saver) in tty
# (Not supported on FreeBSD)
; disable_blanking = 0
2020-02-05 19:42:02 +01:00
[color]
# Colors can be one of seven predefined: black, blue, cyan, green, magenta, red, white, yellow.
2020-10-21 00:43:21 +02:00
# Or defined by hex code '#xxxxxx' (hex code must be within ''). User defined colors requires
2023-08-14 18:12:39 +02:00
# a terminal that can change color definitions such as Gnome-terminal or rxvt.
2020-10-21 00:43:21 +02:00
# default is to keep current terminal color
; background = default
; foreground = default
2023-08-14 18:12:39 +02:00
# SDL and sdl_glsl only support hex code colors, these are the default:
2022-05-18 23:22:55 +02:00
; background = '#111111'
2023-08-14 18:12:39 +02:00
; foreground = '#33ffff'
2022-05-18 23:22:55 +02:00
2023-08-14 18:12:39 +02:00
# Gradient mode, only hex defined colors are supported,
# background must also be defined in hex or remain commented out. 1 = on, 0 = off.
2020-10-21 00:43:21 +02:00
# You can define as many as 8 different colors. They range from bottom to top of screen
2023-08-14 18:12:39 +02:00
; gradient = 0
; gradient_count = 8
; gradient_color_1 = '#59cc33'
; gradient_color_2 = '#80cc33'
; gradient_color_3 = '#a6cc33'
; gradient_color_4 = '#cccc33'
; gradient_color_5 = '#cca633'
; gradient_color_6 = '#cc8033'
; gradient_color_7 = '#cc5933'
; gradient_color_8 = '#cc3333'
2023-09-15 02:12:54 +02:00
gradient = 1
gradient_count = 3
gradient_color_1 = '#008080'
gradient_color_2 = '#D58E00'
gradient_color_3 = '#D50000'
2020-02-05 19:42:02 +01:00
[smoothing]
# Percentage value for integral smoothing. Takes values from 0 - 100.
# Higher values means smoother, but less precise. 0 to disable.
2022-05-18 23:22:55 +02:00
# DEPRECATED as of 0.8.0, use noise_reduction instead
2020-10-21 00:43:21 +02:00
; integral = 77
2020-02-05 19:42:02 +01:00
2020-10-21 00:43:21 +02:00
# Disables or enables the so-called "Monstercat smoothing" with or without "waves". Set to 0 to disable.
2022-05-18 23:22:55 +02:00
; monstercat = 0
; waves = 0
2020-02-05 19:42:02 +01:00
# Set gravity percentage for "drop off". Higher values means bars will drop faster.
# Accepts only non-negative values. 50 means half gravity, 200 means double. Set to 0 to disable "drop off".
2022-05-18 23:22:55 +02:00
# DEPRECATED as of 0.8.0, use noise_reduction instead
2020-02-05 19:42:02 +01:00
; gravity = 100
2022-05-18 23:22:55 +02:00
2020-02-05 19:42:02 +01:00
# In bar height, bars that would have been lower that this will not be drawn.
2022-05-18 23:22:55 +02:00
# DEPRECATED as of 0.8.0
2020-02-05 19:42:02 +01:00
; ignore = 0
2023-08-14 18:12:39 +02:00
# Noise reduction, int 0 - 100. default 77
2022-05-18 23:22:55 +02:00
# the raw visualization is very noisy, this factor adjusts the integral and gravity filters to keep the signal smooth
2023-08-14 18:12:39 +02:00
# 100 will be very slow and smooth, 0 will be fast but noisy.
; noise_reduction = 77
2022-05-18 23:22:55 +02:00
2020-02-05 19:42:02 +01:00
[eq]
# This one is tricky. You can have as much keys as you want.
2023-08-14 18:12:39 +02:00
# Remember to uncomment more than one key! More keys = more precision.
2020-02-05 19:42:02 +01:00
# Look at readme.md on github for further explanations and examples.
; 1 = 1 # bass
; 2 = 1
; 3 = 1 # midtone
; 4 = 1
; 5 = 1 # treble